Python 中的 matplotlib.patches.connectionpatch 类
原文:https://www.geesforgeks.org/matplotlib-patches-connectionpatch-python 中的类/
Matplotlib 是 Python 中一个惊人的可视化库,用于数组的 2D 图。Matplotlib 绘图库是一个基于 NumPy 阵列的多平台数据可视化库,旨在与更广泛的 SciPy 堆栈协同工作。
matplot lib.patches.connection patch
matplotlib.patches.connectionpatch matplotlib.patches.fancyarropatch 类的一个子类,用于在两点之间建立连接线。
语法:class matplotlib.patches.connectionpatch(xyA,xyB,coordsA,coordsB=None,axesA=None,axesB=None,arrowstyle='-',arrow_嬗变器=None,connectionstyle='arc3 ',connector=None,patchA=None,patchB=None,shrinkA=0.0,shrinkB=0.0,突变 _scale=10.0,突变 _aspect=None,clip_on=False,dpi_cor=1.0,**kwargs
参数:
- xyA: 是 x-y 图上连线的起点,也叫 a 点。
- xyB: 是 x-y 图上连线的起点,也叫 b 点。
- 坐标:点 a 的坐标
- 坐标 B: 点 b 的坐标
- axesA: 是 x-y 图上连接轴的起点。
- axesB: 是 x-y 图上连接轴的终点。
- 箭头样式:用于连接箭头的样式。它的默认类型是“-”。
- 箭_嬗变器:用来忽略一条连接线。
- 连接方式:描述了波萨和波萨是如何连接的。它可以是类 ConnectionStyle 的实例,也可以是名为 connectionstyle 的字符串,它有可选的逗号分隔属性。
- 连接器:一般被忽略,决定忽略哪个连接器。
- 面片:用于在 a 点添加面片
- 面片:用于在 B 点添加面片
- 收缩卡:用于收缩 a 点的连接器
- 收缩块:用于收缩 b 点的连接器
- 突变_缩放:箭头样式属性(如 head_length)缩放的值。
- 突变 _aspect: 突变前矩形的高度会被这个值挤压,突变后的盒子会被它的倒数拉伸。
- clip_on: 设置艺术家是否使用剪辑。
- dpi_cor: dpi_cor 目前用于线宽相关的东西和收缩因子。突变规模受此影响。
以下是有效 Kwargs 密钥列表;
xyA 和 xyB 的坐标由字符串坐标 sA 和坐标 sB 表示。
例 1:
蟒蛇 3
from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1, 2,
figsize =(6, 3))
# Draw a simple arrow between
# two points in axes coordinates
# within a single axes.
xyA = (0.2, 0.2)
xyB = (0.8, 0.8)
coordsA = "data"
coordsB = "data"
con = ConnectionPatch(xyA, xyB,
coordsA, coordsB,
arrowstyle ="-|>",
shrinkA = 5, shrinkB = 5,
mutation_scale = 20,
fc ="w")
ax1.plot([xyA[0], xyB[0]], [xyA[1],
xyB[1]], "o")
ax1.add_artist(con)
# Draw an arrow between the
# same point in data coordinates,
# but in different axes.
xy = (0.3, 0.2)
con = ConnectionPatch(
xyA = xy, coordsA = ax2.transData,
xyB = xy, coordsB = ax1.transData,
arrowstyle ="->", shrinkB = 5)
ax2.add_artist(con)
# Draw a line between the different
# points, defined in different coordinate
# systems.
con = ConnectionPatch(
# in axes coordinates
xyA =(0.6, 1.0), coordsA = ax2.transAxes,
# x in axes coordinates, y in data coordinates
xyB =(0.0, 0.2), coordsB = ax2.get_yaxis_transform(),
arrowstyle ="-")
ax2.add_artist(con)
ax1.set_xlim(0, 1)
ax1.set_ylim(0, 1)
ax2.set_xlim(0, .5)
ax2.set_ylim(0, .5)
plt.show()
输出:
例 2:
蟒蛇 3
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch
import numpy as np
# make figure and assign axis
# objects
fig = plt.figure(figsize =(9, 5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
fig.subplots_adjust(wspace = 0)
# pie chart parameters
ratios = [.27, .56, .17]
explode = [0.1, 0, 0]
# rotate so that first wedge is
# split by the x-axis
angle = -180 * ratios[0]
ax1.pie(ratios, autopct ='% 1.1f %%',
startangle = angle,
explode = explode)
# bar chart parameters
xpos = 0
bottom = 0
ratios = [.33, .54, .07, .06]
width = .2
colors = [[.1, .3, .5],
[.1, .3, .3],
[.1, .3, .7],
[.1, .3, .9]]
for j in range(len(ratios)):
height = ratios[j]
ax2.bar(xpos, height, width,
bottom = bottom,
color = colors[j])
ypos = bottom + ax2.patches[j].get_height() / 2
bottom += height
ax2.text(xpos,
ypos,
"% d %%" % (ax2.patches[j].get_height() * 100),
ha ='center')
ax2.set_title('')
ax2.legend(('50-65', 'Over 65', '35-49', 'Under 35'))
ax2.axis('off')
ax2.set_xlim(- 2.5 * width, 2.5 * width)
# use ConnectionPatch to draw
# lines between the two plots
# get the wedge data
theta1, theta2 = ax1.patches[0].theta1, ax1.patches[0].theta2
center, r = ax1.patches[0].center, ax1.patches[0].r
bar_height = sum([item.get_height() for item in ax2.patches])
# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA =(-width / 2, bar_height),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA =(-width / 2, 0),
coordsA = ax2.transData,
xyB =(x, y),
coordsB = ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
plt.show()
输出: