Python 中的 matplotlib.colors.diverging norm 类
原文:https://www.geeksforgeeks.org/matplotlib-colors-diverging norm-in-class-python/
Matplotlib 是 Python 中一个惊人的可视化库,用于数组的 2D 图。Matplotlib 是一个多平台数据可视化库,构建在 NumPy 数组上,旨在与更广泛的 SciPy 堆栈一起工作。
matplotlib.colors.DivergingNorm
matplotlib.colors.divergingnome类属于 matplotlib.colors 模块。matplotlib.colors 模块用于将颜色或数字参数转换为 RGBA 或 RGB。该模块用于将数字映射到颜色,或者在一维颜色数组(也称为颜色映射)中进行颜色规格转换。 matplotlib.colors.diverging norm 类在围绕概念中心绘制变化率不均匀或不等的数据时非常有用。例如,数据范围在-2 到之间,以 0 为中心或中点。
语法:matplotlib.colors.diverging norm(vcenter,vmin,vmax) 参数:
vcenter :它接受一个浮点值,该值定义了归一化中的 0.5 数据值。
vmin: 可选参数,接受浮点值,归一化定义 0.0 数据值,默认为数据集最小值。
vmax: 为可选参数,接受浮点值,归一化定义 1.0 数据值,默认为数据集最大值。
例 1:
蟒蛇 3
import numpy
from matplotlib import pyplot as plt
from matplotlib import colors
# dummy data to plot
x = numpy.linspace(0, 2*numpy.pi, 30)
y = numpy.linspace(0, 2*numpy.pi, 20)
[A, B] = numpy.meshgrid(x, y)
Q = numpy.sin(A)*numpy.cos(B)
fig = plt.figure()
plt.ion()
# yellow to green to red
# colormap
plt.set_cmap('brg')
ax = fig.add_subplot(1, 2, 1)
plt.pcolor(A, B, Q)
plt.colorbar()
ax = fig.add_subplot(1, 2, 2)
# defining the scale, with white
# at zero
vmin = -0.2
vmax = 0.8
norms = colors.DivergingNorm(vmin=vmin,
vcenter=0,
vmax=vmax)
plt.pcolor(A, B, Q,
vmin=vmin,
vmax=vmax,
norm=norms)
plt.colorbar()
输出:
例 2:
蟒蛇 3
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.colors as colors
file = cbook.get_sample_data('topobathy.npz',
asfileobj = False)
with np.load(file) as example:
topo = example['topo']
longi = example['longitude']
latit = example['latitude']
figure, axes = plt.subplots(constrained_layout = True)
# creating a colormap that
# has land and ocean clearly
# delineated and of the
# same length (256 + 256)
undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
land = plt.cm.terrain(np.linspace(0.25, 1, 256))
every_colors = np.vstack((undersea, land))
terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map',
every_colors)
# the center is offset so that
# the land has more dynamic range
# while making the norm
diversity_norm = colors.DivergingNorm(vmin =-500,
vcenter = 0,
vmax = 4000)
pcm = axes.pcolormesh(longi, latit, topo,
rasterized = True,
norm = diversity_norm,
cmap = terrain_map, )
axes.set_xlabel('Longitude $[^o E]{content}apos;)
axes.set_ylabel('Latitude $[^o N]{content}apos;)
axes.set_aspect(1 / np.cos(np.deg2rad(49)))
figure.colorbar(pcm, shrink = 0.6,
extend ='both',
label ='Elevation [m]')
plt.show()
输出: