跳转至

Python 中的 matplotlib.axes.axes.get_ybound()

原文:https://www.geeksforgeeks.org/matplotlib-axes-axes-get_ybound-in-python/

Matplotlib 是 Python 中的一个库,是 NumPy 库的数值-数学扩展。轴类包含了大部分的图形元素:轴、刻度、线二维、文本、多边形等。,并设置坐标系。Axes 的实例通过回调属性支持回调。

matplotlib.axes.axes.get_ybound()函数

matplotlib 库的 Axes 模块中的 Axes.get_ybound()函数用于以递增的顺序返回 y 轴的数值上下限

语法: Axes.get_ybound(self)

参数:该方法不接受任何参数。

返回:该方法返回以下内容

  • 下,上:这返回当前 y 轴的上下边界。

注意:该功能可以在各种条件下代替 get_ylim 使用。

下面的例子说明了 matplotlib.axes.axes.get_ybound()函数在 matplotlib.axes 中的作用:

例 1:

# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt

fig, (ax, ax1) = plt.subplots(1, 2)
t = 3*(np.random.rand(2, 100) - .5)
x = np.cos(2 * np.pi * t)
y = np.sin(2 * np.pi * t)

ax.plot(x, y, 'g')
lower, upper = ax.get_ybound()
ax.set_title('Original Window',
             fontsize = 10, fontweight ='bold')

ax1.plot(x, y, 'g')
ax1.set_ybound(1.5 * lower, 0.5 * upper)
ax1.set_title('Using get_ybound() function',
             fontsize = 10, fontweight ='bold')
fig.suptitle('matplotlib.axes.Axes.get_ybound() Example\n',
             fontsize = 14, fontweight ='bold')
plt.show()

输出:

例 2:

import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)

# the random data
x = np.random.randn(1000)
y = np.random.randn(1000)

# definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
spacing = 0.005

rect_scatter = [left, bottom, width, height]
rect_histx = [left, 
              bottom + height + spacing, 
              width, 0.2]

rect_histy = [left + width + spacing, 
              bottom, 0.2, height]

# start with a rectangular Figure
plt.figure()

ax_scatter = plt.axes(rect_scatter)
ax_scatter.tick_params(direction ='in',
                       bottom = True, 
                       right = True)

ax_histx = plt.axes(rect_histx)
ax_histx.tick_params(direction ='in', 
                     labeltop = True)

ax_histy = plt.axes(rect_histy)
ax_histy.tick_params(direction ='in', 
                     labelleft = True)

# the scatter plot:
ax_scatter.scatter(2 * x, y * 2, color ="green")

# now determine nice limits by hand:
binwidth = 0.05
lim = np.ceil(np.abs([x, y]).max() / binwidth) * binwidth
ax_scatter.set_xbound((-0.5 * lim, 0.5 * lim))
ax_scatter.set_ybound((-0.25 * lim, 0.25 * lim))

bins = np.arange(-lim, lim + binwidth, binwidth)
ax_histx.hist(x, bins = bins,
              color ="green")

ax_histy.hist(y, bins = bins, 
              color ="green",
              orientation ='horizontal')

ax_histx.set_xbound(ax_scatter.get_xbound())
ax_histy.set_ybound(ax_scatter.get_ybound())

plt.show()

输出:



回到顶部