Python 中使用 Matplotlib 的插入排序可视化
原文:https://www.geeksforgeeks.org/insert-sort-visualization-using-matplotlib-in-python/
先决条件: 插入排序使用 Matplotlib 制作动画
通过分析和比较为比较和交换元素而进行的操作数量,可视化算法使理解它们变得更加容易。为此我们将使用 matplotlib,以绘制条形图来表示数组的元素,
进场:
- 我们将生成一个包含随机元素的数组。
- 将在该数组上调用该算法,并将使用 yield 语句而不是 return 语句来实现可视化。
- 在比较和交换之后,我们将得出阵列的当前状态。因此,算法将返回一个生成器对象。
- Matplotlib 动画将用于可视化数组的比较和交换。
- 数组将存储在 matplotlib bar 容器对象(“rects”)中,其中每个 bar 的大小将等于数组中元素的相应值。
- matplotlib 动画的内置 FuncAnimation 方法将容器和生成器对象传递给用于创建动画的函数。动画的每一帧对应于生成器的一次迭代。
- 重复调用动画函数会将矩形的高度设置为等于元素的值。
蟒蛇 3
# import all the modules
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import matplotlib as mp
import numpy as np
import random
# set the style of the graph
plt.style.use('fivethirtyeight')
# input the size of the array (list here)
# and shuffle the elements to create
# a random list
n = int(input("enter array size\n"))
a = [i for i in range(1, n+1)]
random.shuffle(a)
# insertion sort
def insertionsort(a):
for j in range(1, len(a)):
key = a[j]
i = j-1
while(i >= 0 and a[i] > key):
a[i+1] = a[i]
i -= 1
# yield the current position
# of elements in a
yield a
a[i+1] = key
yield a
# generator object returned by the function
generator = insertionsort(a)
# to set the colors of the bars.
data_normalizer = mp.colors.Normalize()
color_map = mp.colors.LinearSegmentedColormap(
"my_map",
{
"red": [(0, 1.0, 1.0),
(1.0, .5, .5)],
"green": [(0, 0.5, 0.5),
(1.0, 0, 0)],
"blue": [(0, 0.50, 0.5),
(1.0, 0, 0)]
}
)
fig, ax = plt.subplots()
# the bar container
rects = ax.bar(range(len(a)), a, align="edge",
color=color_map(data_normalizer(range(n))))
# setting the view limit of x and y axes
ax.set_xlim(0, len(a))
ax.set_ylim(0, int(1.1*len(a)))
# the text to be shown on the upper left
# indicating the number of iterations
# transform indicates the position with
# relevance to the axes coordinates.
text = ax.text(0.01, 0.95, "", transform=ax.transAxes)
iteration = [0]
# function to be called repeatedly to animate
def animate(A, rects, iteration):
# setting the size of each bar equal
# to the value of the elements
for rect, val in zip(rects, A):
rect.set_height(val)
iteration[0] += 1
text.set_text("iterations : {}".format(iteration[0]))
anim = FuncAnimation(fig, func=animate,
fargs=(rects, iteration), frames=generator, interval=50,
repeat=False)
plt.show()
输出: